Equal Compositions of Rational Functions

Kenz Kallal, Matthew Lipman, Felix Wang
Mentors: Thao Do and Professor Michael Zieve

Fifth Annual MIT-PRIMES Conference May 17, 2015

The Problems

A rational function is a ratio of two polynomials.

Problem 1

Find all rational functions $a, c \in \mathbb{Q}(X)$ such that $a(Y)=c(Z)$ has infinitely many solutions for $Y, Z \in \mathbb{Q}$.

One source of solutions to Problem 1 comes from the following problem when the functions have rational coefficients:

Problem 2

Find all rational functions $a, b, c, d \in \mathbb{C}(X)$ such that

$$
a(b(X))=c(d(X))
$$

SOME EXAMPLES:

- $X^{m} \circ X^{n}=X^{n} \circ X^{m}=X^{m n}$

SOME EXAMPLES:

- $X^{m} \circ X^{n}=X^{n} \circ X^{m}=X^{m n}$
- For an arbitrary rational function $h(X)$,

$$
X^{2} \circ X h\left(X^{2}\right)=X h(X)^{2} \circ X^{2}=X^{2} h\left(X^{2}\right)^{2} .
$$

RESULT

Theorem

If the numerator of $a(X)-c(Y)$ is irreducible, then one of the following must hold:

- $\operatorname{deg} a, \operatorname{deg} c \leq 250$

Result

Theorem

If the numerator of $a(X)-c(Y)$ is irreducible, then one of the following must hold:

- $\operatorname{deg} a, \operatorname{deg} c \leq 250$
- at least one of a and c are "nice" functions (e.g. X^{m}, Chebyshev, functions coming from elliptic curves)

Result

Theorem

If the numerator of $a(X)-c(Y)$ is irreducible, then one of the following must hold:

- $\operatorname{deg} a, \operatorname{deg} c \leq 250$
- at least one of a and c are "nice" functions (e.g. X^{m}, Chebyshev, functions coming from elliptic curves)
- Up to change in variables,

$$
a=X^{i}(X-1)^{j}, c=r X^{i}(X-1)^{j}
$$

OUTLINE OF OUR STRATEGY

Combinatorics, computer programs

RAMIFICATION

Definition (Ramification)

- The ramification index $e_{f}(P)$ off at a point P is the multiplicity of P as a root of $f(X)-f(P)$.

RAMIFICATION

Definition (Ramification)

- The ramification index $e_{f}(P)$ off at a point P is the multiplicity of P as a root of $f(X)-f(P)$.
- The ramification multiset $E_{f}(Q)$ is defined as the collection of all ramification indices $e_{f}(P)$ for points P such that $f(P)=Q$.

RAMIFICATION

Definition (Ramification)

- The ramification index $e_{f}(P)$ of f at a point P is the multiplicity of P as a root of $f(X)-f(P)$.
- The ramification multiset $E_{f}(Q)$ is defined as the collection of all ramification indices $e_{f}(P)$ for points P such that $f(P)=Q$.
- Example: $f(X)=X^{3}+X^{4}=X^{3}(X+1)$ has $E_{f}(0)=[3,1]$.

MULTISET PROBLEM

The multiset problem

If the numerator of $a(X)-c(Y)$ is irreducible,
N.1. $\sum_{i \in A_{k}} i=m$ and $\sum_{i \in C_{k}} i=n$ for each k (m and n are the degrees of a and c and A_{k} and C_{k} are ramification multisets of a and c).
N.2. $\sum_{k=1}^{r}\left(m-\left|A_{k}\right|\right)=2 m-2$ and $\sum_{k=1}^{r}\left(n-\left|C_{k}\right|\right)=2 n-2$.
N.3. $\sum_{k=1}^{r} \sum_{i \in A_{k}} \sum_{j \in C_{k}}(i-\operatorname{gcd}(i, j)) \in\{2 m-2,2 m\}$.

SOLVING THE MULTISET PROBLEM

Let m, n denote the degrees of a and c. We will assume that $n \geq m$. We split into 3 cases:

1. $n \geq m \geq 250$.

SOLVING THE MULTISET PROBLEM

Let m, n denote the degrees of a and c. We will assume that $n \geq m$. We split into 3 cases:

1. $n \geq m \geq 250$.
2. $m<250$ and $n \geq 10 \cdot m$.

SOLVING THE MULTISET PROBLEM

Let m, n denote the degrees of a and c. We will assume that $n \geq m$. We split into 3 cases:

1. $n \geq m \geq 250$.
2. $m<250$ and $n \geq 10 \cdot m$.
3. $m<250$ and $n<10 \cdot m$.

SOLVING THE MULTISET PROBLEM

- Locally: Any multiset A_{i} must be almost all copies of the same "dominant number," k_{i}.

Solving the multiset problem

- Locally: Any multiset A_{i} must be almost all copies of the same "dominant number," k_{i}.
- Globally: We find all the possibilities for $\left\{k_{i}\right\}$.

Solving the multiset problem

- Locally: Any multiset A_{i} must be almost all copies of the same "dominant number," k_{i}.
- Globally: We find all the possibilities for $\left\{k_{i}\right\}$.
- For each possibility of $\left\{k_{i}\right\}$, we solve for $\left\{A_{i}\right\}$.

Results

Proposition

If rational functions a and c are solutions to the multiset problem, then at least one of a and c satisfies

$$
\sum_{k=1}^{r}\left(1-\frac{1}{\operatorname{lcm}\left(F_{k}\right)}\right) \leq 2
$$

where $\left\{F_{k}\right\}$ is the list of all ramification multisets of that function.

$$
\sum_{i=1}^{x}\left(1-\frac{1}{a_{i}}\right) \leq 2
$$

where $a_{i} \geq 2$.

$$
\sum_{i=1}^{r}\left(1-\frac{1}{a_{i}}\right) \leq 2
$$

where $a_{i} \geq 2$.

1. $(2,2,2,2)$

$$
\sum_{i=1}^{r}\left(1-\frac{1}{a_{i}}\right) \leq 2
$$

where $a_{i} \geq 2$.

1. $(2,2,2,2)$
2. $(2,3,6)$
3. $(2,3,5)$
4. $(2,3,4)$
5. $(2,4,4)$
6. $(3,3,3)$
7. $(2,2, u)$ where u is any integer

$$
\sum_{i=1}^{r}\left(1-\frac{1}{a_{i}}\right) \leq 2
$$

where $a_{i} \geq 2$.

1. $(2,2,2,2)$
2. $(2,3,6)$
3. $(2,3,5)$
4. $(2,3,4)$
5. $(2,4,4)$
6. $(3,3,3)$
7. $(2,2, u)$ where u is any integer
8. (u, v) where u and v are any integers

$$
\sum_{i=1}^{r}\left(1-\frac{1}{a_{i}}\right) \leq 2
$$

where $a_{i} \geq 2$.

1. $(2,2,2,2)$
2. $(2,3,6)$
3. $(2,3,5)$
4. $(2,3,4)$
5. $(2,4,4)$
6. $(3,3,3)$
7. $(2,2, u)$ where u is any integer
8. (u, v) where u and v are any integers
9. (u) where u is any integer

Solving for the A_{i}

1. $A_{1} \cup A_{2} \cup A_{3} \cup A_{4}=\left[1^{4}, 2^{2 m-2}\right]$.
2. $A_{1}=A_{2}=[m]$.

Solving for the C_{i}

For example, suppose that $A_{1}=A_{2}=[m]$. This corresponds to $a(X)=X^{m}$.

1. $c(X)=h(X)^{m} X^{k}$ for k relatively prime to m,
2. $m=6$ and $c(X)=h(X)^{6} X^{3}(X-1)^{ \pm 2}$,
3. $m=4$ and $c(X)=h(X)^{4} X^{2}(X-1)^{ \pm 1}$,
4. $m=3$ and $c(X)=h(X)^{3} X^{ \pm 1}(X-1)^{ \pm 1}$ (with the \pm independent),
5. $m=2$ and $c(X))=h(X)^{2} X(X-1)\left(X-X_{0}\right)$ (with $0 \neq x_{0} \neq 1$,
where $h(X)$ is any rational function.

BACK TO THE ORIGINAL PROBLEMS

- checking that functions a and c exist.

BACK TO THE ORIGINAL PROBLEMS

- checking that functions a and c exist.
- determining whether $a(X)-c(Y)$ is irreducible

EXISTENCE OF RATIONAL FUNCTIONS

Hurwitz's Theorem

A finite collection of k multisets A_{i} of sum n with corresponds to a rational function if and only if both of the following are true:

EXISTENCE OF RATIONAL FUNCTIONS

Hurwitz's Theorem

A finite collection of k multisets A_{i} of sum n with corresponds to a rational function if and only if both of the following are true:

- $\sum_{i \leq k}\left(n-\left|A_{i}\right|\right)=2 n-2$.
- There exist permutations $g_{1}, \ldots, g_{k} \in S_{n}$ such that g_{i} has cycle structure A_{i} and the product of the permutations is the identity. Furthermore, the group generated by $g_{1}, \ldots g_{k}$ must be transitive.

TESTING FOR IRREDUCIBILITY

Extra Condition

For all $i, j \leq r, A_{i} \cup A_{j} \cup C_{i} \cup C_{j}$ has greatest common divisor equal to one.

TESTING FOR IRREDUCIBILITY

Extra Condition

For all $i, j \leq r, A_{i} \cup A_{j} \cup C_{i} \cup C_{j}$ has greatest common divisor equal to one.

Theorem (Reducibility test)

$$
\begin{aligned}
& \text { If } \sum_{k=1}^{r} \sum_{i \in A_{k}} \sum_{j \in C_{k}}(i-\operatorname{gcd}(i, j))<2 m-2 \text {, any rationals a }(X) \\
& \text { with multisets } A_{k} \text { and } c(Y) \text { with multisets } C_{k} \text { will have a }(X)-c(Y) \\
& \text { reducible. }
\end{aligned}
$$

This is similar to one of our previous conditions, so we usually keep c the same and vary a to show that c is decomposable so that $a(X)-c(Y)$ is reducible.

Future research

- Finish finding a and c for the case in which a^{\prime} s multisets have small lcm.

Future Research

- Finish finding a and c for the case in which a^{\prime} s multisets have small lcm.
- Continue to lower the bounds for 250 and 10 above.

FUTURE RESEARCH

- Finish finding a and c for the case in which a^{\prime} s multisets have small lcm.
- Continue to lower the bounds for 250 and 10 above.
- The case in which $a(X)-c(Y)$ is not irreducible.

Acknowledgements

- Professor Michael Zieve (UMichigan)
- Our mentor Thao Do
- MIT PRIMES and Dr. Tanya Khovanova
- Our parents

