Title	Introduction	Solving the multiset problem	Back to the original problem
	000000	00000	00000

Equal Compositions of Rational Functions

Kenz Kallal, Matthew Lipman, Felix Wang Mentors: Thao Do and Professor Michael Zieve

Fifth Annual MIT-PRIMES Conference May 17, 2015

Title	Introduction	Solving the multiset problem	Back to the original problem
	00000	00000	00000

THE PROBLEMS

A rational function is a ratio of two polynomials.

Problem 1

Find all rational functions $a, c \in \mathbb{Q}(X)$ such that a(Y) = c(Z) has infinitely many solutions for $Y, Z \in \mathbb{Q}$.

One source of solutions to Problem 1 comes from the following problem when the functions have rational coefficients:

Problem 2

Find all rational functions $a, b, c, d \in \mathbb{C}(X)$ such that

a(b(X)) = c(d(X)).

Title	Introduction	Solving the multiset problem	Back to the original problem
	00000	00000	00000

Some examples:

$$\blacktriangleright X^m \circ X^n = X^n \circ X^m = X^{mn}$$

Title	Introduction	Solving the multiset problem	Back to the original problem
	00000	00000	00000

Some examples:

- $\blacktriangleright X^m \circ X^n = X^n \circ X^m = X^{mn}$
- For an arbitrary rational function h(X),

$$X^{2} \circ Xh(X^{2}) = Xh(X)^{2} \circ X^{2} = X^{2}h(X^{2})^{2}.$$

Title	Introduction	Solving the multiset problem	Back to the original problem

Result

Theorem

If the numerator of a(X) - c(Y) is irreducible, then one of the following must hold:

• deg a, deg $c \le 250$

Title	Introduction	Solving the multiset problem	Back to the original problem

RESULT

Theorem

If the numerator of a(X) - c(Y) is irreducible, then one of the following must hold:

- deg a, deg $c \le 250$
- ► at least one of a and c are "nice" functions (e.g. X^m, Chebyshev, functions coming from elliptic curves)

Title	Introduction	Solving the multiset problem	Back to the original problem
	00000	00000	00000

Result

Theorem

If the numerator of a(X) - c(Y) is irreducible, then one of the following must hold:

- deg a, deg $c \le 250$
- ► at least one of a and c are "nice" functions (e.g. X^m, Chebyshev, functions coming from elliptic curves)
- Up to change in variables,

$$a = X^{i}(X-1)^{j}, c = rX^{i}(X-1)^{j}.$$

Title	Introduction	Solving the multiset problem	Back to the original problem
	000000	00000	00000

OUTLINE OF OUR STRATEGY

Title	Introduction	Solving the multiset problem	Back to the original problem
	000000	00000	00000

RAMIFICATION

Definition (Ramification)

► The ramification index e_f(P) of f at a point P is the multiplicity of P as a root of f(X) - f(P).

RAMIFICATION

Definition (Ramification)

- ► The ramification index e_f(P) of f at a point P is the multiplicity of P as a root of f(X) - f(P).
- ► The ramification multiset E_f(Q) is defined as the collection of all ramification indices e_f(P) for points P such that f(P) = Q.

RAMIFICATION

Definition (Ramification)

- ► The ramification index e_f(P) of f at a point P is the multiplicity of P as a root of f(X) f(P).
- ► The ramification multiset E_f(Q) is defined as the collection of all ramification indices e_f(P) for points P such that f(P) = Q.
- Example: $f(X) = X^3 + X^4 = X^3(X+1)$ has $E_f(0) = [3, 1]$.

Title	Introduction	Solving the multiset problem	Back to the original problem
	000000	00000	00000

Multiset problem

The multiset problem

If the numerator of a(X) - c(Y) is irreducible,

N.1. $\sum_{i \in A_k} i = m$ and $\sum_{i \in C_k} i = n$ for each k (m and n are the degrees of a and c and A_k and C_k are ramification multisets of a and c).

N.2.
$$\sum_{k=1}^{r} (m - |A_k|) = 2m - 2$$
 and $\sum_{k=1}^{r} (n - |C_k|) = 2n - 2$.

N.3.
$$\sum_{k=1}^{r} \sum_{i \in A_k} \sum_{j \in C_k} (i - \gcd(i, j)) \in \{2m - 2, 2m\}.$$

Title	Introduction	Solving the multiset problem	Back to the original problem
	000000	00000	00000

Let *m*, *n* denote the degrees of *a* and *c*. We will assume that $n \ge m$. We split into 3 cases:

1. $n \ge m \ge 250$.

Title	Introduction	Solving the multiset problem	Back to the original problem
	000000	00000	00000

Let *m*, *n* denote the degrees of *a* and *c*. We will assume that $n \ge m$. We split into 3 cases:

- 1. $n \ge m \ge 250$.
- 2. m < 250 and $n \ge 10 \cdot m$.

Title	Introduction	Solving the multiset problem	Back to the original problem
	000000	00000	00000

Let *m*, *n* denote the degrees of *a* and *c*. We will assume that $n \ge m$. We split into 3 cases:

- 1. $n \ge m \ge 250$.
- 2. m < 250 and $n \ge 10 \cdot m$.
- 3. m < 250 and $n < 10 \cdot m$.

Title	Introduction	Solving the multiset problem	Back to the original problem
	000000	0000	00000

Locally: Any multiset A_i must be almost all copies of the same "dominant number," k_i.

Title	Introduction	Solving the multiset problem	Back to the original problem
	000000	0000	00000

- ► Locally: Any multiset A_i must be almost all copies of the same "dominant number," k_i.
- Globally: We find all the possibilities for $\{k_i\}$.

Title	Introduction	Solving the multiset problem	Back to the original problem
	000000	0000	00000

- ► Locally: Any multiset A_i must be almost all copies of the same "dominant number," k_i.
- Globally: We find all the possibilities for $\{k_i\}$.
- For each possibility of $\{k_i\}$, we solve for $\{A_i\}$.

Title	Introduction	Solving the multiset problem	Back to the original problem
	000000	00000	00000

RESULTS

Proposition

If rational functions a and c are solutions to the multiset problem, then at least one of a and c satisfies

$$\sum_{k=1}^r \left(1 - \frac{1}{\operatorname{lcm}(F_k)}\right) \le 2$$

where $\{F_k\}$ is the list of all ramification multisets of that function.

Title	Introduction 000000	Solving the multiset problem ○00●0	Back to the original problem
		$\sum_{i=1}^r (1-\frac{1}{a_i}) \le 2$	
whe	ere $a_i \geq 2$.		

Title	Introduction 000000	Solving the multiset problem	Back to the original problem
		$\sum_{i=1}^r (1 - \frac{1}{a_i}) \le 2$	
whe	ere $a_i \geq 2$.		
1.	(2, 2, 2, 2)		

Title	Introduction 000000	Solving the multiset problem	Back to the original problem
		$\sum_{i=1}^r (1-\frac{1}{a_i}) \le 2$	
	where $a_i \geq 2$.		
	1. (2, 2, 2, 2)		
	2. (2,3,6)		
	3. (2,3,5)		
	4. (2,3,4)		
	5. (2, 4, 4)		

- 6. (3,3,3)
- 7. (2, 2, u) where *u* is any integer

Title	Introduction 000000	Solving the multiset problem	Back to the original problem
		$\sum_{i=1}^r (1-\frac{1}{a_i}) \le 2$	
v	where $a_i \geq 2$.		
	1. (2,2,2,2)		
	2. (2,3,6)		
	3. (2,3,5)		
	4. (2,3,4)		
	5. (2,4,4)		

- 6. (3,3,3)
- 7. (2, 2, u) where *u* is any integer
- 8. (u, v) where u and v are any integers

Title	Introduction 000000	Solving the multiset problem ○00●0	Back to the original problem
		$\sum_{i=1}^r (1-\frac{1}{a_i}) \le 2$	
v	where $a_i \ge 2$.		
	1. (2, 2, 2, 2)		
	2. (2,3,6)		
	3. (2,3,5)		
	4. (2,3,4)		
	5. (2, 4, 4)		

- 6. (3,3,3)
- 7. (2, 2, u) where *u* is any integer
- 8. (u, v) where u and v are any integers
- 9. (u) where u is any integer

Title	Introduction	Solving the multiset problem	Back to the original problem
	000000	0000	00000

Solving for the A_i

1.
$$A_1 \cup A_2 \cup A_3 \cup A_4 = [1^4, 2^{2m-2}].$$

8. $A_1 = A_2 = [m].$

Title	Introduction	Solving the multiset problem	Back to the original problem
	000000	00000	00000

Solving for the C_i

For example, suppose that $A_1 = A_2 = [m]$. This corresponds to $a(X) = X^m$.

1. $c(X) = h(X)^m X^k$ for *k* relatively prime to *m*,

2.
$$m = 6$$
 and $c(X) = h(X)^6 X^3 (X-1)^{\pm 2}$,

3.
$$m = 4$$
 and $c(X) = h(X)^4 X^2 (X-1)^{\pm 1}$,

4. m = 3 and $c(X) = h(X)^3 X^{\pm 1} (X - 1)^{\pm 1}$ (with the \pm independent),

5.
$$m = 2$$
 and $c(X) = h(X)^2 X(X-1)(X-X_0)$ (with $0 \neq x_0 \neq 1$,

where h(X) is any rational function.

Title	Introduction	Solving the multiset problem	Back to the original problem
	000000	00000	●0000

BACK TO THE ORIGINAL PROBLEMS

• checking that functions *a* and *c* exist.

Title	Introduction	Solving the multiset problem	Back to the original problem
	000000	00000	•0000

BACK TO THE ORIGINAL PROBLEMS

- checking that functions *a* and *c* exist.
- determining whether a(X) c(Y) is irreducible

itle	Introduction	
	000000	

Back to the original problem 0000

EXISTENCE OF RATIONAL FUNCTIONS

Hurwitz's Theorem

A finite collection of k multisets A_i of sum n with corresponds to a rational function if and only if both of the following are true:

EXISTENCE OF RATIONAL FUNCTIONS

Hurwitz's Theorem

A finite collection of k multisets A_i of sum n with corresponds to a rational function if and only if both of the following are true:

►
$$\sum_{i \leq k} (n - |A_i|) = 2n - 2.$$

► There exist permutations g₁,..., g_k ∈ S_n such that g_i has cycle structure A_i and the product of the permutations is the identity. Furthermore, the group generated by g₁,...g_k must be transitive.

Title	Introduction	Solving the multiset problem	Back to the original problem
	000000	00000	00000

TESTING FOR IRREDUCIBILITY

Extra Condition

For all $i, j \le r, A_i \cup A_j \cup C_i \cup C_j$ has greatest common divisor equal to one.

2	Introduc
	00000

TESTING FOR IRREDUCIBILITY

Extra Condition

For all $i, j \le r, A_i \cup A_j \cup C_i \cup C_j$ has greatest common divisor equal to one.

Theorem (Reducibility test)

If $\sum_{k=1}^{r} \sum_{i \in A_k} \sum_{j \in C_k} (i - \gcd(i, j)) < 2m - 2$, any rationals a(X) with multisets A_k and c(Y) with multisets C_k will have a(X) - c(Y) reducible.

This is similar to one of our previous conditions, so we usually keep *c* the same and vary *a* to show that *c* is decomposable so that a(X) - c(Y) is reducible.

Title	Introduction 000000	Solving the multiset problem	Back to the original problem

FUTURE RESEARCH

► Finish finding *a* and *c* for the case in which *a*'s multisets have small lcm.

Title	Introduction 000000	Solving the multiset problem	Back to the original problem

FUTURE RESEARCH

- ► Finish finding *a* and *c* for the case in which *a*'s multisets have small lcm.
- Continue to lower the bounds for 250 and 10 above.

Title	Introduction 000000	Solving the multiset problem	Back to the original problem

FUTURE RESEARCH

- ► Finish finding *a* and *c* for the case in which *a*'s multisets have small lcm.
- Continue to lower the bounds for 250 and 10 above.
- The case in which a(X) c(Y) is not irreducible.

Title	Introduction 000000	Solving the multiset problem	Back to the original problem 0000●

ACKNOWLEDGEMENTS

- Professor Michael Zieve (UMichigan)
- Our mentor Thao Do
- ► MIT PRIMES and Dr. Tanya Khovanova
- Our parents